- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Aydin, Ahmet_Gunhan (1)
-
Beytur, Hasan_Burhan (1)
-
Vikalo, Haris (1)
-
de_Veciana, Gustavo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a hierarchical inference system with multiple clients connected to a server via a shared communication resource. When necessary, clients with low-accuracy machine learning models can offload classification tasks to a server for processing on a high-accuracy model. We propose a distributed online offloading algorithm which maximizes the accuracy subject to a shared resource utilization constraint thus indirectly realizing accuracy-delay tradeoffs possible given an underlying network scheduler. The proposed algorithm, named Lyapunov-EXP4, introduces a loss structure based on Lyapunov-drift minimization techniques to the bandits with expert advice framework. We prove that the algorithm converges to a near-optimal threshold policy on the confidence of the clients’ local inference without prior knowledge of the system’s statistics and efficiently solves a constrained bandit problem with sublinear regret. We further consider settings where clients may employ multiple thresholds, allowing more aggressive optimization of overall accuracy at a possible loss in fairness. Extensive simulation results on real and synthetic data demonstrate convergence of Lyapunov-EXP4, and show themore » « less
An official website of the United States government

Full Text Available